Xiao Peng YANG Qiang CHEN Kunio SAWAYA
The effects of wall reflection on indoor MIMO channel capacity are statistically investigated with consideration of the average received power, the effective degrees of freedom (EDOF) of multipaths and the eigenvalues of transfer channel covariance matrix. It is found that the stronger wall reflection can lead to higher MIMO channel capacity.
Xiao Peng YANG Qiang CHEN Kunio SAWAYA
Effects of wall material on the channel capacity of an indoor multiple input multiple output (MIMO) system are investigated using a hybrid technique of the method of moments (MoM) and the finite difference time domain (FDTD) method with consideration of the Ricean K factor and the effective degrees of freedom (EDOF) of multiple paths.
Yifei ZHAO Ming ZHAO Yunzhou LI Jing WANG
In this letter, we elucidate the ergodic capacity of multiple-input multiple-output (MIMO) systems with M-ary phase-shift keying (MPSK) modulation and time-multiplexed pilots in frequency-flat Rayleigh fading environment. With linear minimum mean square error (LMMSE) channel estimation, the optimal pilots design is presented. For mathematical tractability, we derive an easy-computing closed-form lower bound of the channel capacity. Based on the lower bound, the optimal power allocation between the data and pilots is also presented in closed-form, and the optimal training length is investigated by numerical optimization. It is shown that the transmit scheme with equal training and data power and optimized training length provides suboptimal performance, and the transmit scheme with optimized training length and training power is optimal. With the latter scheme, in most situations, the optimal training length equals the number of the transmit antennas and the corresponding optimal power allocation can be easily computed with the proposed formula.
Jeongkeun CHOI Yoshihiko AKAIWA
Feedback-type Adaptive Array Antenna has been proposed for frequency division duplexed (FDD) system, where the mobile station (MS) measures channel characteristics and sends those back to the base station (BS). Using a higher number of feed-back bits provides better performance. However it wastes channel capacity of the up-link. On the other hand, error in feedback signals transmission causes significant performance degradation. To solve these problems, this paper proposes a method that the MS sends back the difference between the optimum weights calculated at the MS and weights which are currently used at the BS. Bit error rate performance of the system is shown under a realistic propagation condition.
Qianjing GUO Suk Chan KIM Dong Chan PARK
Recent work has shown that the usage of multiple antennas at the transmitter and receiver in a flat fading environment results in a linear increase in channel capacity. But increasing the number of antennas induces the higher hardware costs and computational burden. To overcome those problems, it is effective to select antennas appropriately among all available ones. In this paper, a new antenna selection method is proposed. The transmit antennas are selected so as to maximize the channel capacity using the genetic algorithm (GA) which is the one of the general random search algorithm. The results show that the proposed GA achieves almost the same performance as the optimal selection method with less computational amount.
Jiabin LIU Shihua ZHU Wenyuan LI
This paper studies the optimization of the effective channel capacity of wideband code division multiple access (WCDMA) systems under Rayleigh fading environments. Firstly, the results for Shannon capacity of fading channels with channel side information are reviewed, where the capacity is achieved by using an optimal power control scheme. Secondly, an optimal interference threshold is set for a given system outage probability Pout to minimize total interference. Finally, the effective channel capacity of WCDMA is defined and a target SIR level γ* is derived with the Lagrangian multiplier method to maximize the effective channel capacity. It is shown that is dependent on the power control interference ratio (PCIR) ρ, the number of diversity paths identified by the receiver M, and the outage probability of the system. Simulation results are provided to validate the theoretical deductions. We conclude that the total effective channel capacity will be maximized as long as M4, and ρ0.5 for a proper value of .
Xiaofeng LIU Hongwen YANG Wenbin GUO Dacheng YANG
In this letter, we study the capacity of fading channels with perfect channel side information (CSI) at the receiver and quantized CSI at the transmitter. We present a general algorithm for the joint design of optimal quantization and power control for maximizing the forward link capacity over flat fading channels. Numerical results for Rayleigh fading are given.
Yifei ZHAO Ming ZHAO Jing WANG Yong REN
The enormous capacity potential of multiple-input multiple-output (MIMO) is based on some unrealistic assumptions, such as the complete channel state information (CCSI) at the receiver and Gaussian distributed data. In this paper, in frequency-flat Rayleigh fading environment, we investigate the ergodic capacity of MIMO systems with M-ary phase-shift keying (MPSK) modulation and superimposed pilots for channel estimation. With linear minimum mean square error (LMMSE) channel estimation, the optimal pilots design is presented. For the mathematical tractability, we also derive an easy-computing closed-form lower bound of the channel capacity. Furthermore, the optimal power allocation between the data and pilots is investigated by numerical optimization. It is shown that more power should be devoted to the data in low SNR environments and to the pilots in high SNR environments.
Kei SAKAGUCHI Hai-Yeow-Eugene CHUA Kiyomichi ARAKI
The effect of antenna correlation on the Multiple-Input Multiple-Output (MIMO) channel capacity in the real propagation environment is a topic of interest. In this paper, we present the results of a measurement campaign conducted in an indoor Line-Of-Sight (LOS) office environment. Channel responses were taken with varying distance in a static indoor environment. Results showed measurements with high received Signal-to-Noise Ratio (SNR) and a high level of correlation among the antenna elements. Further analysis of the results showed that MIMO systems can achieve sufficient channel capacity compared to the Single-Input Single-Output (SISO) system, despite high antenna correlation. Theoretical analysis reveals that when the SNR is sufficiently high, the loss in channel capacity due to high antenna correlation is relatively low. Therefore it is shown that in the indoor LOS environment, MIMO systems can be sufficiently efficient because the MIMO channel is more robust to antenna correlation when the SNR is high.
In this paper, we present a new closed-form formula for the ergodic capacity of multiple-input multiple-output (MIMO) wireless channels. Assuming independent and identically distributed (i.i.d.) Rayleigh flat-fading between antenna pairs and equal power allocation to each of the transmit antennas, the ergodic capacity of such channels is expressed in closed form as finite sums of the exponential integrals which are the special cases of the complementary incomplete gamma function. Using the asymptotic capacity rate of MIMO channels, which is defined as the asymptotic growth rate of the ergodic capacity, we also give simple approximate expressions for the MIMO capacity. Numerical results show that the approximations are quite accurate for the entire range of average signal-to-noise ratios.
Chunyan GAO Ming ZHAO Shidong ZHOU Yan YAO
Two important lemmas on the determinant of random matrixes are deduced in this paper. Then based on these results, expression for the mean capacity of MIMO system over Rayleigh fading channels is obtained. This expression requires little calculation and is simple and efficient compared with conventional methods, and furthermore, it gives an explicit relation on the mean capacity of MIMO systems with antenna numbers and the relation of mean capacity with signal to noise ratio (SNR). Accuracy of this theoretic formula has been verified by computer simulation.
We present the channel capacity, specifically the mutual information, of an additive white Gaussian noise (AWGN) channel in the presence of phase noise, and investigate the effect of phase noise impairment on powerful error-correcting codes (ECCs) that normally operate in low signal-to-noise ratio (SNR) regions. This channel-induced impairment is common in digital coherent transmission systems and is caused by imperfect carrier tracking of the phase error detector for coherent demodulation. It is shown through semi-analytical derivation that decreasing the information rate from its ideal capacity to an information rate lower than its inherent capacity significantly mitigates the impairment caused by phase noise, and that operating systems in the low SNR region also lessen the phase noise impairment by transforming typical phase noise behavior into Gaussian-like behavior. We also demonstrate by computer simulation using turbo-trellis coded modulation (TTCM) with high-order quadrature amplitude modulation (QAM) signals that the use of capacity-approaching codes (CACs) makes transmission systems invulnerable to phase noise. To verify the effect of CACs on phase noise, simulation results of TTCM are also compared to that of trellis-coded modulation (TCM), which is used as an example of a conventional ECC operating at a relatively high SNR.
The effects of noisy estimates of fading on turbo-coded modulation are studied in the presence of flat Rayleigh fading, and the channel capacity of the system is calculated to determine the limit above which no reliable transmission is guaranteed. This limit is then compared to the signal-to-noise ratio required for a turbo-coded modulation scheme to achieve a bit-error-rate of 10-5. Numerical results are obtained, especially for QAM signals. Our results show that even slightly noisy estimates significantly degrade the theoretical limits related to channel capacities, and that an effective use of capacity-approaching codes can lower the sensitivity to noisy estimates, though noise that exceeds a certain threshold cannot be offset by the performance improvement associated with error-correcting capability.
The capacity of quantum channel with product input states was formulated by the quantum coding theorem. However, whether entangled input states can enhance the quantum channel is still open. It turns out that this problem is reduced to a special case of the more general problem whether the capacity of product quantum channel exhibits additivity. In the present study, we apply one of the quantum Arimoto-Blahut type algorithms to the latter problem. The results suggest that the additivity of product quantum channel capacity always holds and that entangled input states cannot enhance the quantum channel capacity.
Hua LIN Takashi YAHAGI Jianming LU Xiaoqiu WANG
The performance of a twisted-pair channel under ADSL environment is assumed to be dominated by far end crosstalk (FEXT) and additive white Gaussian noise (AWGN). In this paper, we study the channel capacity of the copper twisted pair and the optimum input power spectral density distribution at this channel capacity in the presence of ADSL environment. The channel capacity under different loop length and different input power will also be given. The simulation results show that the distribution of the optimum input power spectral density in the presence of AWGN and FEXT is not uniform. This is different from the situation where AWGN is the only interference, where the input power distribution is approximately uniform.
Shogo USAMI Tsuyoshi Sasaki USUDA Ichi TAKUMI Masayasu HATA
Recently, the quantum information theory attracts much attention. In quantum information theory, the existence of superadditivity in capacity of a quantum channel was foreseen conventionally. So far, some examples of codes which show the superadditivity in capacity have been clarified. However in present stage, characteristics of superadditivity are not still clear up enough. The reason is as follows. All examples were shown by calculating the mutual information by quantum combined measurement, so that one had to solve the eigenvalue and the eigenvector problems. In this paper, we construct a simplification algorithm to calculate the mutual information by using square-root measurement as decoding process of quantum combined measurement. The eigenvalue and the eigenvector problems are avoided in the algorithm by using group covariancy of binary linear codes. Moreover, we derive the analytical solution of the mutual information for parity check codes with any length as an example of applying the simplification algorithm.
Oscar Yassuo TAKESHITA Ryuji KOHNO Hideki IMAI
Multilevel RLL (Runlength Limited) sequences are analyzed. Their noiseless capacity and lower bounds on the channel capacity in the presence of additive white Gaussian noise are given. Moreover, the analytical power spectra formulae for those sequences which generalize the previously derived one for binary sequences are newly derived. We conclude from the analysis of the power spectra that multilevel RLL sequences are attractive from the point of view that they increase information rate while keeping low DC-content and self-clocking capability of binary RLL sequences.
Fotis LAZARAKIS George S. TOMBRAS Kostas DANGAKIS
The Shannon-Hartley theorem for channel capacity presupposes signal transmission over time-invariant Gaussian channels. In a mobile radio environment, communications channels have randomly time-variant characteristics. In this paper, an expression for the average capacity of Rician fading channels is derived. It is shown that the average capacity of Rician channels is always lower than that of the Gaussian channel, while the Rayleigh channel capacity values represent the worst situation. In addition, the Rician channel capacity is examined when reception by a maximal-ratio combining technique with M-branches is employed, indicating its positive effect on channel average capacity when weak signal power or severe fading conditions are present. Finally, the relation between Rician and Rayleigh fading environment with respect to channel average capacity is discussed.
Mitsuyoshi SUZUKI Hideichi SASAOKA
This paper studies the effect of frequency re-using patterns on the channel capacity in the forward link of orthogonal code division multiple access (CDMA) cellular systems. The received carrier-to-interference ratio (CIR) determined by computer simulation shows that re-using the same frequency channel on every third sector (3-sector layout) provides superior channel capacity than does every-sector re-use (1-sector layout).
This paper addresses onboard processing architecture employing direct regeneration. The advantage of direct regeneration is its hardware simplicity, even though the bit error rate performance is slightly inferior to that of demodulation-remodulation scheme with coherent detection. The channel filtering schemes as well as achievable capacities are examined by computer simulation. It is found that the system with direct regeneration has advantage in channel capacity and transmit earth station e.i.r.p. for small earth stations. A possible configuration of direct regeneration onboard in future satellite systems is proposed.